Fuel Cells Opportunities and Challenges

Fuel Cells for Stationary Applications

September 18, 2000

Rita A. Bajura, Director

National Energy Technology Laboratory

Benefits of Distributed Generation

Cost Reduction

Grid Stability

"Green" Technology

52 RB 9/00

Fuel Cells for Distributed Generation

Fuel Cell Installation at a Spokane, Washington, Hotel

Fuel Cell Technologies

- Phosphoric Acid Fuel Cells (PAFC)
- Proton Exchange Membrane (PEM) Fuel Cells
- Molten Carbonate Fuel Cells (MCFC)
- Solid Oxide Fuel Cells (SOFC)

Phosphoric Acid Fuel Cells (PAFC)

ONSI 200-kW PAFC
Being Installed at New York City's Times Square

2K-1952 RB 9/00

Proton Exchange Membrane (PEM) Fuel Cells

NETL's PEM Test Facility

Using PEMs in Residential Building Applications

2K-1952 RB 9/00

Molten Carbonate Fuel Cells (MCFC)

Fuel Cell Energy MCFC

Solid Oxide Fuel Cells (SOFC)

Siemens-Westinghouse SOFC

Solid State Energy Conversion Alliance A Core Module for Multiple Applications

Responding to the Challenges

- Lower cost fuel cell technologies
- Increasing awareness of fuel cell technology
- Uniform interconnection standards
- Real-time monitoring and control for transmission and distribution

A Vision for the Future

Efficient

"Green" Technology

Quiet and Reliable